If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-208=0
a = 1; b = 2; c = -208;
Δ = b2-4ac
Δ = 22-4·1·(-208)
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{209}}{2*1}=\frac{-2-2\sqrt{209}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{209}}{2*1}=\frac{-2+2\sqrt{209}}{2} $
| 4(3n+4n)=28n | | -163=-7-6(-5r-9) | | -22=-8v+4v+6 | | y+21=-39 | | −3/1=4/j−3/10 | | 7^x-1=371 | | `-3(2x-4)=36` | | 9a-15=-42 | | 5=4+1/2o | | -114=-3(6w+2) | | 2k=5.36 | | −22=−8v+4v+6 | | (4x+2)=(3x-5) | | 27-5x=14+8x | | 20+2(-8z+12)=-7z-19 | | 9w+4w+7=7w+7w+9+3 | | 5x+4+2=46 | | 3/4v—1(4/5)=-3(9/80) | | 6=v=-7 | | 4.3z–2.5z=-14.4 | | 16/15=10/2x-2 | | 7(x–2)=56 | | 5x-17-x=32 | | 7v+5=5v+4 | | 21=2m+5 | | 180=3n+15 | | 2x−5(x−5)=−9+4x−15 | | x²+15=x²+15 | | -x-9=15+3x | | 3^x+0.7=4.9 | | 3/4v-11/4=-39/80 | | 15m+10=85 |